White Matter Fiber Segmentation Using Functional Varifolds

نویسندگان

  • Kuldeep Kumar
  • Pietro Gori
  • Benjamin Charlier
  • Stanley Durrleman
  • Olivier Colliot
  • Christian Desrosiers
چکیده

The extraction of fibers from dMRI data typically produces a large number of fibers, it is common to group fibers into bundles. To this end, many specialized distance measures, such as MCP, have been used for fiber similarity. However, these distance based approaches require point-wise correspondence and focus only on the geometry of the fibers. Recent publications have highlighted that using microstructure measures along fibers improves tractography analysis. Also, many neurodegenerative diseases impacting white matter require the study of microstructure measures as well as the white matter geometry. Motivated by these, we propose to use a novel computational model for fibers, called functional varifolds, characterized by a metric that considers both the geometry and microstructure measure (e.g. GFA) along the fiber pathway. We use it to cluster fibers with a dictionary learning and sparse coding-based framework, and present a preliminary analysis using HCP data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Benefits and implementations of Diffusion tensor imaging and Neural Fiber Tractography in Brain Surgery

Background and Aim: The methods for detecting brain activation with fMRI, MRI provides a way to measure the anatomical connections which enable lightning-fast communication among neurons that specialize in different kinds of brain functions. Diffusion tensor imaging is able to measure the direction of bundles of the axonal fibers which are all aligned. Besides mapping white matter fiber tracts,...

متن کامل

Automatic Segmentation of White Matter Structures from DTI Using Tensor Invariants and Tensor Orientation

INTRODUCTION DTI analysis of brain structures has shown to be relevant in a number of neurological clinical pathologies, such as brain ischemia, multiple sclerosis or epilepsy, among others. In schizophrenia, group studies have demonstrated alterations in the diffusion of several fiber bundles within the white matter [1]. The automatic segmentation of these structures from DTI has spurred signi...

متن کامل

Fiber clustering versus the parcellation-based connectome

We compare two strategies for modeling the connections of the brain's white matter: fiber clustering and the parcellation-based connectome. Both methods analyze diffusion magnetic resonance imaging fiber tractography to produce a quantitative description of the brain's connections. Fiber clustering is designed to reconstruct anatomically-defined white matter tracts, while the parcellation-based...

متن کامل

Human brain functional MRI and DTI visualization with virtual reality.

Magnetic resonance diffusion tensor imaging (DTI) and functional MRI (fMRI) are two active research areas in neuroimaging. DTI is sensitive to the anisotropic diffusion of water exerted by its macromolecular environment and has been shown useful in characterizing structures of ordered tissues such as the brain white matter, myocardium, and cartilage. The diffusion tensor provides two new types ...

متن کامل

Quantitative Comparison of SPM, FSL, and Brainsuite for Brain MR Image Segmentation

Background: Accurate brain tissue segmentation from magnetic resonance (MR) images is an important step in analysis of cerebral images. There are software packages which are used for brain segmentation. These packages usually contain a set of skull stripping, intensity non-uniformity (bias) correction and segmentation routines. Thus, assessment of the quality of the segmented gray matter (GM), ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017